تبلیغات
ریاضی و هوش - هندسه( 1)
پنجشنبه 12 آبان 1390

هندسه( 1)

   نوشته شده توسط: سیدمحمدامین شاهمرادی    نوع مطلب :درس ،

تاریخچه ی هندسه

سه قرن اول ریاضیات یونانی كه با تلاشهای اولیه در هندسه برهانی بوسیله تالس در حدود ۶۰۰ سال قبل از میلاد شروع شده و با كتاب برجسته اصول اقلیدس در حدود ۳۰۰ سال قبل از میلاد به اوج رسید، دوره‌ای از دستاوردهای خارق العاده را تشكیل می‌دهد. در حدود ۱۲۰۰ سال قبل از میلاد بود كه قبایل بدوی “دوریایی” با ترك دژهای كوهستانی شمال برای دستیابی به قلمروهای مساعدتر در امتداد جنوب راهی شبه جزیره یونان شدند و متعاقب آن قبیله بزرگ آنها یعنی اسپارت را بنا كردند. بخش مهمی از سكنه قبلی برای حفظ جان خود ، به آسیای صغیر و زایر یونانی و جزایر یونانی دریای اژه گریختند و بعدها در آنجا مهاجرنشنهای تجاری یونانی را برپا كردند. در این مهاجرنشینها بود كه در قرن ششم (ق.م) اساس مكتب یونانی نهاده شد و فلسفه یونانی شكوفا شد و هندسه برهانی تولد یافت. در این ضمن ایران بدل به امپراطوری بزگ نظامی شده بود و به پیروزی از یك برنامه توسعه طلبانه در سال ۵۴۶ (ق.م) شهر یونیا و مهاجرنشینهای یونانی آسیای صغیر را تسخیر نمود. در نتیجه عده‌ای از فیلسوفان یونانی مانند فیثاغورث موطن خود را ترك و به مهاجرنشینهای در حال رونق جنوب ایتالیا كوچ كردند. مدارس فلسفه و ریاضیات در “كروتونا” زیر نظر فیثاغورث در “الیا” زیر نظر كسنوفانس ، زنون و پارمیندس پدید آمدند. در حدود۴۸۰ سال قبل از میلاد آرامش پنجاه ساله برای آتنیها پیش آمد كه دوره درخشانی برای آنان بود و ریاضیدانان زیادی به آتن جذب شدند. در سال ۴۳۱ (ق.م) با آغاز جنگ “پلوپونزی” بین آتنیهای و آسپارتها ، صلح به پایان رسید و با شكست آتنیها دوباره ركورد حاصل شد.ظهور افلاطون و نقش وی در تولید دانش ریاضیاگرچه با پایان جنگ پلوپرنزی مبادله قدرت سیاسی كم اهمیت تر شد، اما رهبری فرهنگی خود را دوباره بدست آورد. افلاطون در آتن یا حوالی آن و در سال ۴۲۷ (ق.م) كه در همان سال نیز طاعون بزرگی شیوع یافت و یك چهارم جمعیت آتن را هلاك رد و موجب شكست آنها شد، به دنیا آمد، وی فلسفه را در آنجا زیر نظر سقراط خواند و سپس در پی كسب حكم عازم سیر و سفرهای طولانی شد. وی بدین ترتیب ریاضیات را زیر نظر تیودوروس در ساحل آفریقا تحصیل كرد. در بازگشت به آتن در حدود سال ۳۸۷ (ق.م) آكادمی معروف خود را تاسیس كرد. تقریبا تمام كارهای مهم ریاضی قرن چهارم (ق.م) بوسیله دوستان یا شاگردان افلاطون انجام شده بود. آكادمی افلاطون به عنوان حلقه ارتباط ریاضیات فیثاغورثیان اولیه و ریاضیات اسكندریه در آمد. تاثیر افلاطون بر ریاضیات ، معلول هیچ یك از كشفیات ریاضی وی نبود، بلكه به خاطر این اعتقاد شورانگیز وی بود كه مطالعه ریاضیات عالیترین زمینه را برای تعلیم ذهن فراهم می‌آورد و از اینرو در پرورش فیلسوفان و كسانی كه می‌بایست دولت آرمانی را اداره كنند، نقش اساسی داشت. این اعتقاد ، شعار معروف او را بر سر در آكادمی وی توجیه می‌كند: “كسی كه هندسه نمی‌داند، داخل نشود.” بنابراین به دلیل ركن منطقی و نحوه برخورد ذهنی نابی كه تصور می‌كرد مطالعه ریاضیات در شخص ایجاد می‌كند، ریاضیات به نظر افلاطون از بیشترین اهمیت برخوردار بود، و به همین جهت بود كه جای پر ارزش را در برنامه درس آكادمی اشغال می‌كرد. در بیان افلاطون اولین توضیحات درباره فلسفه ریاضی موجود هست.

 

 

 

هندسه فضایی

مقدمه

هندسه فضایی به بررسی موقعیت اجسام ، اجرام و نقاط متحرک یا ساکن در فضا می‌پردازد، فضا مختصاتی سه بعدی دارد شامل طول ، عرض ، ارتفاع که این ابعاد را با x ، y و z در صفحه مختصات فضایی نمایش می‌دهیم. مهمترین مبحث در هندسه فضایی مبحث بردارها می‌باشند. بنابراین در هندسه فضایی به مؤلفه‌های برداری ، بردارهای یکه ، صفحات ، فاصله‌ها و ... خواهیم پرداخت.

مؤلفه‌های برداری و بردارهای یکه i ، k , j

بعضی از کمیات فیزیکی مانند طول و جرم اندازه پذیر هستند و توسط اندازه‌شان کاملا معین می‌شوند، این کمیات و کمیات نظیر آنها را کمیات اسکالر می‌گوئیم. اما کمیات دیگری وجود دارند که علاوه بر اندازه باید جهت آنها نیز مشخص باشد تا معین شوند این کمیات را کمیات برداری گوئیم. یک بردار را معمولا با پاره خطی جهتدار نمایش می‌دهند که جهتش نمایش جهت بردار بوده و طولش بر حسب یک واحد اختیار شده نمایش اندازه‌اش می‌باشد. دو بردار را زمانی مساوی می‌نامیم که از لحاظ جهت و اندازه یکسان باشند.

بهترین جبر بردارها مبتنی بر نمایش آنها بر حسب مؤلفه‌های موازی محورهای مختصات دکارتی است. این کار با استفاده از واحد طول یکسان بر سه محور x ، z , y صورت می گیرد و در این راه از بردارهای با طول یک در امتداد محورها به عنوان بردارهای یکه استفاده می‌شود که i را بردار یکه محور j ، x را بردار یکه محور y ها و k را بردار یکه محور z ها می‌گوئیم.
مهمترین ویژگی بردارها در فضا مانند حالتی است که در صفحه قرار دارند طول و جهت آنها است. طول بردارها با دو بار استفاده از قضیه فیثاغورس به دست می‌آید. اما به صورت ساده‌تر جهت بردار ناصفر بردار واحدی است که از تقسیم مؤلفه‌های آن بر طولش به دست می‌آید.

بردار بین دو نقطه در فضا

بیشتر اوقات لازم است که بردار بین نقاط را بدست آوریم. هندسه فضایی این مشکل را برای ما حل می‌کند، به این ترتیب که اگر دو نقطه را برحسب مختصات فضایی که دارند بیان کنیم بردار بین این دو نقطه توسط رابطه زیر حاصل خواهد شد:

 

فاصله در فضا

برای یافتن فاصله بین دو نقطه به مختصات گفته شده در مطلب بالا از مجموع توان دوم هر یک از مؤلفه‌های فوق رادیکال با فرجه دوم می‌گیریم بنابراین داریم:


حاصل عبارت فوق یک کمیت اسکالر می‌باشد.
وسط یک پاره خط در فضا
برای پیدا کردن وسط یک پاره خط که دو نقطه را به هم وصل می‌کند متوسط و یا به عبارتی میانگین مختصات را بدست می‌آوریم.

کره و استوانه

علاوه بر مطالب فوق هندسه فضایی به مطالعه کره و استوانه نیز می‌پردازد. معادله متعارف کره به شعاع a و مرکز به صورت زیر است:


در مورد استوانه و مطالعه درباره استوانه ناچار به تعمیم هندسه تحلیلی به فضا هستیم. به طور کلی استوانه سطحی است که از حرکت خط مستقیم در امتداد یک منحنی تولید می‌شود به طوری که همواره موازی خط می‌باشد. به طور کلی ، هر منحنی مانند
در صفحه استوانه‌ای در فضا تعریف می‌کند که معادله آن به صورت فوق می‌باشد و از نقاط خطوطی مار بر منحنی تشکیل شده است که با محور z موازی‌اند. خطوط را گاهی عناصر استوانه می‌نامند. بحث فوق را می‌توان برای استوانه‌هایی که عناصرشان موازی سایر محورهای مختصات‌اند تکرار کرد. به طور خلاصه: یک معادله در مختصات دکارتی ، که از آن یکی از مختصات متغیر حذف شده، نمایش استوانه ای است که عناصرش موازی محور مربوط به متغیر مفقود است. سهمی گونها یکی دیگر از اشکال مختصات فضایی هستند. بسیاری از آنتنها به شکل قطعاتی از سهمی گونهای دوارند، رادیو تلسکوپها یکی دیگر از انواع سهمی گونهای مورد استفاده بشر هستند که در ساخت آنها از هندسه فضایی مدد گرفته شده است.

منشور

منشور قائم شکلی فضایی است که از دو یا چند ضلعی مساوی و موازی تشکیل شده که رئوس این چندضلعیها طوری به هم وصل شده اند که وجوه جانبی این شکل فضایی مستطیل می‌باشد.

مکعب مستطیل

مکعب مستطیل منشوری است که قاعده‌های آن مستطیل می‌باشد اگر ابعاد قاعده مکعب مستطیل b , a و ارتفاع آن c باشد خواهیم داشت:

a+b)2c) = مساحت جانبی مکعب مستطیل

(ab+ac+bc)2=2ab+(2bc+2ac)= مساحت کل مکعب مستطیل

Abc= حجم مکعب مستطیل

هرم

هرم شکلی است فضایی که قاعده آن یک یا چند ضلعی است و وجوه جانبی آن مثلث است. این مثلثها یک رأس مشترک به نام S دارند. هرمی که قاعده آن مربع باشد هرم مربع القاعده و هرمی که قاعده آن مثلث باشد هرم مثلث القاعده نامیده می‌شود. پاره خطی که از رأس هرم بر صفحه قاعده آن عمود می‌شود ارتفاع نامیده می‌شود. اگر قاعده یک هرم یک چند ضلعی منتظم باشد پای ارتفاع آن بر مرکز قاعده منطبق باشد، هرم را هرم منتظم می‌نامیم. ارتفاع هر وجه جانبی هرم منتظم را سهم هرم می‌نامند.

2/سهم×محیط قاعده= مساحت جانبی هرم منتظم

 

ارتفاع×مساحت قاعده ×3/1 = حجم هرم

مخروط

اگر یک مثلث قائم الزاویه را حول یکی از اضلاع زاویه قائمه دوران دهیم شکلی فضایی پدید می‌آید که مخروط نامیده می‌شود. در این صورت ضلعی که مثلث را حول آن دوران داده‌ایم ارتفاع مخروط و ضلع دیگر زاویه قائمه شعاع قاعده مخروط و وتر مثلث مولد مخروط می‌باشد.

2 / مولد مخروط×محیط قاعده مخروط = مساحت جانبی مخروط

 

ارتفاع×مساحت قاعده×3/1 = حجم مخروط

هندسه تحلیلی

مقدمه

هندسه تحلیلی شامل مباحثی چون بردارها ، معادلات حرکت پرتابه ، معادلات خط ، ضرب عددی و برداری، بردارها. مقاطع مخروطی که در هندسه یونان پا گرفت و امروزه با معادلات درجه دو بعنوان منحنی‌هایی در صفحه مختصات توصیف می‌شوند یونانیان زمان افلاطون این منحنی‌ها را فصل مشترک یک صفحه با یک مخروط می‌گرفتند که نام مقطع مخروطی از آن ناشی شده است. نکته‌ای که حائز اهمیت اشاره به این مسئله است که در مطالعات هندسه تحلیلی مختصات دکارتی از اهمیت فوق‌العاده‌ای دارد زیرا توسط این مختصات ما می‌توانیم طول و عرض و ارتفاع اجسامی را که می‌بینیم به صفحه منتقل کرده و درباره آنها براحتی به مطالعه پردازیم.

بردارها

برخی از کمیات که اندازه می‌گیریم با اندازه‌شان کاملا مشخص می‌شوند مانند جرم ، طول ، زمان. اما همانطور که می‌دانیم توصیف یک نیرو ، تغییر مکان و سرعت تنها با اندازه مشخص نمی‌شوند بلکه برای درک صحیحی از آنها باید جهت آنها نیز برای ما مشخص باشند کمیاتی که علاوه بر اندازه دارای جهت نیز می‌باشند معمولا با پیکانهایی به نمایش درمی‌آیند که به جهت اثر کمیت اشاره می‌کنند و طول‌هایشان به اندازه اثر آنها برحسب واحد مشخص اشاره می‌کنند. به این کمیات بردار می‌گوییم.

یک بردار واقع در صفحه عبارت است از پاره‌خطی جهتدار از آنجا که بردار اساسا از طول و جهت تشکیل می‌شود و بردار را همسنگ و یا حتی یکی می‌نامیم هرگاه طول و جهتشان یکی باشد.

بردارهای نوین امروزی ریشه در کواترنیونها دارند. کواترنیونها تعمیمی هستند از جفت به چهارتایی مرتب . جبر کواترنیونها را ویلیام همیلتن ریاضیدان ایرلندی (1805-1865) ابداع کرد. اما مهندسان علی‌الخصوص اولیور هویساید آنالیز برداری را رواج دادند. برخی از فیزیکدانان از جمله شاخص‌ترین آنها جیمز کلارک ماکسول ، از هر دو مضمون کواترنیونها و بردارها بهره بردند. سرانجام مقارن با تحویل قرن ، آنالیز برداری گیبس و هوسیاید غلبه کرد. مهندسان از جمله نخستین معتقدان، فیزیکدانان از نخستین گروندگان و ریاضیدانان آخرین پذیرندگان این باب از ریاضیات بودند.

بردارها درفضا

مهمترین ویژگی بردارها در فضا مانند حالتی که در صفحه داشتند طول و جهت آنهاست. طول برداری مانند با دوبار استفاده از قضیه فیثاغورث بدست می‌آید. و جهت آنها از تقسیم مولفه‌های برداری چون A بر اندازه‌اش بدست می‌آید.

 

معادلات پارامتری حرکت ایده‌آل پرتابه

برای بدست آوردن معادلات حرکت پرتابه فرض می‌کنیم پرتابه مانند ذره‌ای رفتار می‌کند که در صفحه مختصات قائم حرکت می‌کند و تنها نیروی موثر بر آن در ضمن حرکتش ، نیروی ثابت گرانش است که همواره روبه پایین است. در عمل هیچ یک از این فرضیات برقرار نیست زمین در زیر پرتابه می‌چرخد هوا نیروی اصطکاکی ایجاد می‌کند که به سرعت و ارتفاع پرتابه بستگی دارد. برای توصیف حرکت در یک دستگاه مختصات مشخص فرض می‌کنیم پرتابه در لحظه از مبدا صفحه xy پرتاب می‌شود. همچنین فرض می‌کنیم پرتابه در ربع اول حرکت می‌کند و مقدار سرعت اولیه است و بردار سرعت با محور xهای مثبت زاویه می‌سازد. در هر لحظه t ‌، ، مکان پرتابه با جفت مختصات . مشخص می‌شود. بنابراین پس از ساده‌ کردن یک سری از معادلات به روابط زیر دست می‌یابیم که مکان ذره t ثانیه پس از پرتاب برای ما مشخص می‌سازد:


مسیر ایده‌آل یک سهمی است.

اغلب ادعا می‌شود که مسیر حرکت آبی که از یک لوله بیرون می‌جهد یک سهمی است اما اگر به دقت این مسیر بنگریم می‌بینیم که هوا سقوط آب را کند می‌کند و حرکت آن رو به جلو آنقدر کند است که از انتهای سقوطش از شکل سهموی خارج می‌شود. ادعایی که در مورد سهموی بودن حرکت می‌شود فقط در مورد پرتابه‌های ایده‌آل واقعا درست است. این مطلب را می‌توان از روابط که در بالا برای y ,x ذکر شد بدست آورد. بدین ترتنیب که هرگاه مقدار t را از معادله x بدست آوردیم و آن را در معادله y جاگذاری کنیم معادله دکارتی بدست آمده نسبت به x از درجه دوم و نسبت به y از درجه اول است پس نمودارش یک سهمی است.

خط در فضا

فاصله در فضا

گاهی لازم است که فاصله بین دو نقطه مثل در فضا مشخص باشد برای این کار طول را می‌یابیم که در اینصورت داریم:

وسط پاره خط

مختصات نقطه وسط M پاره‌خطی که دو نقطه را بهم وصل می‌کند متوسط مختصات هستند. برای پی‌بردن به دلیل این مطلب کافی است توجه کنیم که این نقطه مختصات مولفه عددی برداری است که مبدا را به M وصل می‌کند که به این ترتیب تمام مولفه‌های M از نصف مجموع مولفه‌های نظیر به نظیر بدست می‌آید.

زوایای بین خم‌ها

زوایای بین دو خم مشتق‌پذیر در یک نقطه تقاطع آنها عبارت‌اند از زوایای بین خط‌های راس بر آنها در آن نقطه.

معادله‌های خط و پاره‌خط

فرض می‌کنیم L خطی باشد در فضا که از نقطه بگذرد و موازی با بردار باشد. پس L مجموعه نقاطی است مانند به قسمی که بردار با V موازی است یعنی P بر L واقع است اگر و تنها اگر به ازای عددی مانند t داشته باشیم: این معادلات را پس از ساده ‌کردن بصورت معادلات پارامتری متعارف خط L درست می‌یابیم که عبارت‌اند از:


وقتی پارامتر t از تا افزایش می‌یابد نقطه دقیقا یکبار خط را می‌پیماید. وقتی t بازه بسته را می‌پیماید، P از نقطه‌ای که در آن t=a تا نقطه‌ای که در آن t=b بر روی یک پاره‌خط جابجا می‌شود.

فاصله یک نقطه از یک خط

برای یافتن نقطه‌ای چون P از خطی مانند L کافی است برای اولین قدم نقطه‌ای مانند Q را روی L در نظر بگیریم که نزدیکترین فاصله را تا P داشته باشد سپس برای قدم دوم لازم است فاصله P تا Q را محاسبه کنیم بدین ترتیب فاصله یک نقطه از خط دیگری را بدست آورده‌ایم.

معادله صفحه

فرض می‌کنیم M معرف صفحه‌ای از فضاست که از نقطه می‌گذردو بر بردار ناصفر عمود است. پس M از مجموعه نقاطی مانند تشکیل می‌شود که به ازای آنها بردار بر N عمود است. یعنی P روی M است اگر و تنها اگر:
با جاگذاری عبارت معادل در تساوی فوق معادله صفحه حاصل می‌شود.

زاویه بین دو صفحه ، فصل مشترک دو صفحه

بنابه تعریف زاویه بین دو صفحه متقاطع ، زاویه حاده‌ای است که دو بردار قائم بر آنها با هم می‌سازند. بنابراین زاویه بین دو صفحه که بردارهای قائم بر دو صفحه‌اند توسط رابطه زیر حاصل می‌شود:


(منظور از | | ، اندازه بردارها می‌باشد.)
برای یافتن معادلات پارامتری فصل مشترک دو صفحه ابتدا برداری موازی با فصل مشترک و سپس نقطه‌ای واقع بر فصل مشترک می‌یابیم. همانطور که می‌دانیم هر بردار که موازی با فصل مشترک دو صفحه باشد با هر دو صفحه مفروض موازی است لذا بر بردارهای قائم بر آن دو صفحه عمود است. بنابراین با یافتن بردار حاصل ضرب خارجی بردارهای عمود بر صفحات می‌توان بردار موازی فصل مشترک را بیابیم. برای یافتن نقطه‌ای روی فصل مشترک باید نقطه‌ای بیابیم که در هر دو صفحه باشد بدین منظور z=0 را در معادلات صفحه قرار می‌دهیم و دستگاه حاصل را نسبت به x , y حل می‌کنیم نقطه حاصل در هر دو صفحه خواهد کرد.

کاربردها

هندسه تحلیلی همانطور که از نامش پیداست به تحلیل و کنجکاوی هندسه و روابط هندسی می‌پردازد و کاربردهای آن در مسیر علوم از جمله فیزیکی - اخترشناسی- هوافضا- حتی شیمی غیرقابل انکار است. همه مطالب ذکر شده فوق مقدمه‌ای است برای بررسی مفصل‌تر حرکت. مبحث بردارها پایه خوبی برای بسط و گسترش حساب دیفرانسیل و انتگرال فراهم آورده است.

 

هندسه مسطحهشاخه‌ای از هندسه است که با شکل‌های دو بعدی سروکار دارد.گرچه ما در دنیایی سه بعدی زندگی میکنیم مطالعه هندسه مسطحه می‌تواند بینش ما را نسبت به بعضی از ویژگی‌های اطرافمان عمیق کند.


مفاهیم اساسی هندسه نیز،درست همان طور که مفهوم عدد از دنیایی مرئی مجرد شده است،از فرایندی تجریدی که قرن‌ها به طول انجامیده به دست آمده‌اند.
در این مورد ،با چشم پوشی از تفاوت‌های غیر ذاتی، از قبیل رنگ،شکل یا ترکیب رویه ای،و عدم توجه به اختلاف‌های دیگر اشیای حقیقی،به صورتهای فضایی در سه بعد:طول ،عرض و ارتفاع می‌رسیم.
جسم فضایی سه بعد،اما رویه تنها دو بعد،خط مثلا لبه برخورد دو رویه،یک بعد و سرانجام ،نقطه،که به عنوان تقاطع دو خط در نظر گرفته میشود بعد صفر دارد.
در هندسه مسطحه صفحه را همواره به صورتی که داده شده است در نظر می گیریم،و بررسی‌های هندسی را ،در حالت عمومی،در این صفحه انجام می‌دهیم،اما در حالت‌های خاص بهتر است که فضای اقلیدسی نیز به عنوان یک شی هندسی در نظر گرفته شود.
نقطه‌ها و خط‌ها مفاهیم اساسی هندسه مسطحه مقدماتی اند.به طور شهودی،خط را اغلب به صورت مسیر نقطه‌ای تعریف می‌کنند که در صفحه به چنان طریقی حرکت می‌کند که همواره کوتاهترین راه بین دو مکان خود را اختیار می‌کند و تغییر سو نمی‌دهد: با این همه ،حتی در رهیافتی دقیق‌تر نیز هیچ گونه تعریفی از خط و نقطه داده نمی‌شود اما در ریاضیات جدید رابطه‌های بین این دو نوع شی هندسی توسط اصل موضوعه (axiom)ها مشخص می‌شوند.

 

 


در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسکى» و «ریمان» دو نظام هندسى را صورت بندى کردند که هندسه را از سیطره اقلیدس خارج مى کرد. صورت بندى «اقلیدس» از هندسه تا قرن نوزدهم پررونق ترین کالاى فکرى بود و پنداشته مى شد که نظام اقلیدس یگانه نظامى است که امکان پذیر است. این نظام بى چون و چرا توصیفى درست از جهان انگاشته مى شد. هندسه اقلیدسى مدلى براى ساختار نظریه هاى علمى بود و نیوتن و دیگر دانشمندان از آن پیروى مى کردند. هندسه اقلیدسى بر پنج اصل موضوعه استوار است و قضایاى هندسه با توجه به این پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقلیدس مى گوید: «به ازاى هر خط و نقطه اى خارج آن خط، یک خط و تنها یک خط به موازات آن خط مفروض مى تواند از آن نقطه عبور کند.»

 

هندسه لبچفسکی و هندسه ریمانی

هندسه «لباچفسکى» و هندسه «ریمانى» این اصل موضوعه پنجم را مورد تردید قرار دادند. در هندسه «ریمانى» ممکن است خط صافى که موازى خط مفروض باشد از نقطه مورد نظر عبور نکند و در هندسه «لباچفسکى» ممکن است بیش از یک خط از آن نقطه عبور کند. با اندکى تسامح مى توان گفت این دو هندسه منحنى وار هستند. بدین معنا که کوتاه ترین فاصله بین دو نقطه یک منحنى است.

هندسه اقلیدسى فضایى را مفروض مى گیرد که هیچ گونه خمیدگى و انحنا ندارد. اما نظام هندسى لباچفسکى و ریمانى این خمیدگى را مفروض مى گیرند. (مانند سطح یک کره) همچنین در هندسه هاى نااقلیدسى جمع زوایاى مثلث برابر با 180 درجه نیست. (در هندسه اقلیدسى جمع زوایاى مثلث برابر با 180 درجه است.) ظهور این هندسه هاى عجیب و غریب براى ریاضیدانان جالب توجه بود اما اهمیت آنها وقتى روشن شد که نسبیت عام اینشتین توسط بیشتر فیزیکدانان به عنوان جایگزینى براى نظریه نیوتن از مکان، زمان و گرانش پذیرفته شد. چون صورت بندى نسبیت عام اینشتین مبتنى بر هندسه «ریمانى» است. در این نظریه هندسه زمان و مکان به جاى آن که صاف باشد منحنى است.

در مورد نظریه نسبیت خاص

نظریه نسبیت خاص اینشتین تمایز آشکارى میان ریاضیات محض و ریاضیات کاربردى است. هندسه محض مطالعه سیستم هاى ریاضى مختلف است که به وسیله نظام هاى اصول موضوعه متفاوتى توصیف شده اند. برخى از آنها چندبعدى و یا حتى nبعدى هستند. اما هندسه محض انتزاعى است و هیچ ربطى با جهان مادى ندارد یعنى فقط به روابط مفاهیم ریاضى با همدیگر، بدون ارجاع به تجربه مى پردازد. هندسه کاربردى، کاربرد ریاضیات در واقعیت است. هندسه کاربردى به وسیله تجربه فراگرفته مى شود و مفاهیم انتزاعى برحسب عناصرى تفسیر مى شوند که بازتاب جهان تجربه اند. نظریه نسبیت، تفسیرى منسجم از مفهوم حرکت، زمان و مکان به ما مى دهد. انیشتاین براى تبیین حرکت نور از هندسه نااقلیدسى استفاده کرد. بدین منظور هندسه «ریمانى» را برگزید.

هندسه اقلیدسى براى دستگاهى مشتمل بر خط هاى راست در یک صفحه طرح ریزى شده است اما در عالم واقع یک چنین خط هاى راستى وجود ندارد. اینشتین معتقد بود امور واقع هندسه ریمانى را اقتضا کرده اند. نور بر اثر میدان هاى گرانشى خمیده شده و به صورت منحنى در مى آید یعنى سیر نور مستقیم نیست بلکه به صورت منحنى ها و دایره هاى عظیمى است که سطح کرات آنها را پدید آورده اند. نور به سبب میدان هاى گرانشى که بر اثر اجرام آسمانى پدید مى آید خط سیرى منحنى دارد. براساس نسبیت عام نور در راستاى کوتاه ترین خطوط بین نقاط حرکت مى کند اما گاهى این خطوط منحنى هستند چون حضور ماده موجب انحنا در مکان - زمان مى شود.

در مورد نظریه نسبیت عام

در نظریه نسبیت عام گرانش یک نیرو نیست بلکه نامى است که ما به اثر انحناى زمان _ مکان بر حرکت اشیا اطلاق مى کنیم. آزمون هاى عملى ثابت کردند که شالوده عالم نااقلیدسى است و شاید نظریه نسبیت عام بهترین راهنمایى باشد که ما با آن مى توانیم اشیا را مشاهده کنیم. اما مدافعین هندسه اقلیدسى معتقد بودند که به وسیله آزمایش نمى توان تصمیم گرفت که ساختار هندسى جهان اقلیدسى است یا نااقلیدسى. چون مى توان نیروهایى به سیستم مبتنى بر هندسه اقلیدسى اضافه کرد به طورى که شبیه اثرات ساختار نااقلیدسى باشد. نیروهایى که اندازه گیرى هاى ما از طول و زمان را چنان تغییر دهند که پدیده هایى سازگار با زمان - مکان خمیده به وجود آید. این نظریه به «قراردادگرایى» مشهور است که نخستین بار از طرف ریاضیدان و فیزیکدان فرانسوى «هنرى پوانکاره» ابراز شد. اما نظریه هایى که بدین طریق به دست مى آوریم ممکن است کاملاً جعلى و موقتى باشند. اما دلایل کافى براى رد آنها وجود دارد؟


علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف میشود و پنچ اصل به عنوان بدیهیات آن پذیرفته میشود و سایر قضایا با استفاده از این اصول استنتاج میشوند.


اصول

هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت

اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید

اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد

اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد

اصل چهارم - همه ی زوایای قائمه با هم مساوی اند

اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.


ایراد اصل پنجم


اصل پنجم که به اصل توازی معروف است ایجاز سایر اصول را نداشت،جون به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد

در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید

یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود

و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازیها را رها کنی
ولی یانوش جوان از اخطار پدر نهراسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان کشف خود قرار داد و در سال 1831 اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گاوس فرستاد. بعد معلوم شد که گائوس خود مستقلاً آن را کشف کرده است

بعدها مشخص شد که لباچفسکی در سال 1829 کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بوئی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویوئی و لباچفسکی ثبت گردید.


پیوندهای خارجی


WWW.CPH-THEORY.COM



علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه اقلیدسی خلاصه می شد.



 


سارینا
یکشنبه 19 مهر 1394 05:23 ب.ظ
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر
نظرات پس از تایید نشان داده خواهند شد.